Demos Network Specifications
  • Introduction
    • What is Demos Network
    • Demos Network Architecture
  • FAQ
  • Cookbook
    • Project setup
      • Run the project (MacOS)
      • Run the project (Windows)
        • WSL 2 Setup on Windows (10 and 11 only)
        • Issue Troubleshooting
      • Run the project (Ubuntu)
  • SDK
    • Getting Started
    • WebSDK
      • Authentication
        • FIDO2 Passkeys
          • Under the Hood: FIDO2 Passkeys
      • NodeCalls
      • Transactions
        • Creating a transaction
        • Signing a transaction
        • Broadcasting a transaction
      • L2PS SDK
        • The l2ps module
        • Interacting with the L2PS
        • L2PS Messaging System
      • Instant Messaging
        • What is the Instant Messaging Protocol?
        • Architecture Overview
        • Encryption
        • Quickstart
        • Message Types
        • API Reference
        • FAQ
    • Cross Chain
      • General layout of the XM SDKs
      • EVM
      • BTC
      • Solana
      • MultiversX (EGLD)
      • NEAR
      • IBC
      • TON
      • XRPL
      • The XMScript
      • Identities
    • Demoswork
    • Cookbook
      • Demoswork
        • Creating work steps
        • Conditional Operation
        • Base Operation
        • Signing and broadcasting
      • Transactions
        • Crosschain Transaction
        • Native Transactions
      • SWAP
        • Crosschain SWAP
    • Web2
      • Quick Start
      • DAHR API Reference
        • Types
      • Making Requests
      • Identities
        • Twitter
        • GitHub
    • API Reference
    • Bridges
      • Rubic Bridge Test
    • Post Quantum Cryptography
  • Backend
    • Internal Mechanisms
      • Network Time Synchronization
      • Cross Context Identities
    • Global Change Registry
      • GCR Structure
      • How is GCR Synced?
    • Consensus Mechanism
      • Unparalleled Scalability
      • Decentralization in PoR-BFT
      • Enhanced Security
      • Comparative Advantage
      • Addressing Potential Criticisms
      • Conclusion
    • Communications Stack
    • L2PS (Subnet) Framework
      • How are L2PS transactions handled?
    • Miscellaneous
      • Browsing the Postgres DB via psql
    • Bridges
      • Rubic Bridge
    • Developers Testbed
      • Setting up the environment
      • Setting up the repository
      • Installing dependencies
      • Node Configuration
      • Running the node
  • Frontend
    • Demos Providers Discovery Mechanism
Powered by GitBook
On this page
  • Creating a new L2PS
  • Using a pre-existing L2PS
  1. SDK
  2. WebSDK
  3. L2PS SDK

The l2ps module

To standardize this guide, it is advised to always import the l2psmodule with:

import { l2ps } from "@kynesyslabs/demosdk"

Once you have done this, you will be able to access the module classes and methods.

Creating a new L2PS

You can easily create a new L2PS instance with:

var instance = new l2ps.L2PS()

Which will generate the keys for the Subnet and return an instance of it.

Using a pre-existing L2PS

To use a pre-existing L2PS, one must first obtain the RSA Private Key for the Subnet. This acts like a certification of participation to the Subnet.

This private key won't be sent to the node and will remain completely offline for the whole time.

Once obtained, you can create an instance of that L2PS with:

var instance = new l2ps.L2PS(RSAPrivateKey)

Where RSAPrivateKeyis the above-mentioned secret.

PreviousL2PS SDKNextInteracting with the L2PS

Last updated 5 months ago