Demos Network Specifications
  • Introduction
    • What is Demos Network
    • Demos Network Architecture
  • FAQ
  • Cookbook
    • Project setup
      • Run the project (MacOS)
      • Run the project (Windows)
        • WSL 2 Setup on Windows (10 and 11 only)
        • Issue Troubleshooting
      • Run the project (Ubuntu)
  • SDK
    • Getting Started
    • WebSDK
      • Authentication
        • FIDO2 Passkeys
          • Under the Hood: FIDO2 Passkeys
      • NodeCalls
      • Transactions
        • Creating a transaction
        • Signing a transaction
        • Broadcasting a transaction
      • L2PS SDK
        • The l2ps module
        • Interacting with the L2PS
        • L2PS Messaging System
      • Instant Messaging
        • What is the Instant Messaging Protocol?
        • Architecture Overview
        • Encryption
        • Quickstart
        • Message Types
        • API Reference
        • FAQ
    • Cross Chain
      • General layout of the XM SDKs
      • EVM
      • BTC
      • Solana
      • MultiversX (EGLD)
      • NEAR
      • IBC
      • TON
      • XRPL
      • The XMScript
      • Identities
    • Demoswork
    • Cookbook
      • Demoswork
        • Creating work steps
        • Conditional Operation
        • Base Operation
        • Signing and broadcasting
      • Transactions
        • Crosschain Transaction
        • Native Transactions
      • SWAP
        • Crosschain SWAP
    • Web2
      • Quick Start
      • DAHR API Reference
        • Types
      • Making Requests
      • Identities
        • Twitter
        • GitHub
    • API Reference
    • Bridges
      • Rubic Bridge Test
    • Post Quantum Cryptography
  • Backend
    • Internal Mechanisms
      • Network Time Synchronization
      • Cross Context Identities
    • Global Change Registry
      • GCR Structure
      • How is GCR Synced?
    • Consensus Mechanism
      • Unparalleled Scalability
      • Decentralization in PoR-BFT
      • Enhanced Security
      • Comparative Advantage
      • Addressing Potential Criticisms
      • Conclusion
    • Communications Stack
    • L2PS (Subnet) Framework
      • How are L2PS transactions handled?
    • Miscellaneous
      • Browsing the Postgres DB via psql
    • Bridges
      • Rubic Bridge
    • Developers Testbed
      • Setting up the environment
      • Setting up the repository
      • Installing dependencies
      • Node Configuration
      • Running the node
  • Frontend
    • Demos Providers Discovery Mechanism
Powered by GitBook
On this page
  1. Backend
  2. Consensus Mechanism

Enhanced Security

Byzantine Fault Tolerance (BFT)

  • Why: Traditional consensus mechanisms can be vulnerable to attacks from malicious nodes.

    • Example: PoW blockchains like Bitcoin are susceptible to 51% attacks where a majority of mining power could manipulate the blockchain. BFT ensures that even if some nodes act maliciously, the system can continue operating correctly by mathematically verifying node integrity through pseudorandom seeds.

Forced Exclusion of Malicious Nodes

  • Why: Continuous evaluation of nodes based on pseudorandom seed verification actively mitigates potential threats.

    • Example: In a cryptocurrency network where double-spending attacks are common, PoR-BFT’s dynamic shard composition helps in removing compromised nodes by continuously evaluating the blockchain status mathematically through pseudorandom seeds.

PreviousDecentralization in PoR-BFTNextComparative Advantage

Last updated 7 months ago